Data Warehouse

Tutorial Videos

API

Storage and Compute

Data Sources

CDC Setup

Transform

KPI

Models
Segments

Dashboard

Drill Down

Explores

Machine Learning

Sharing

Scheduling

Notifications

View Activity

Admin

Launch On Cloud

FAQs

FAQ's

Security

Feedback

Option to take feedback from UI

Release Notes

Release Notes

Snapchat Marketing

Models

Segments

Snapchat is now a smart investment for many businesses, but creating content for this app is unlike doing so for your other marketing channels. Snapchatters expect behind-the-scenes content they can’t find anywhere else and want the authentic and unpolished version of your brand.

Sprinkle supports a wide range of data sources. On clicking the “+sign”, a list of data sources pops up. In this case, Snapchat Marketing is selected. A new Snapchat Marketing data source is named and created.


After naming the data source, in the connection tab click on ‘connect to SNAPCHAT’ and authorize Sprinkle to connect with Snapchat. The credentials can be tested if they are valid or not by testing the connection before creating.


Once the user signs into his Snapchat account, users will be prompted to allow permissions required for sprinkle to read data further. Once a user provides consent by clicking on ‘Continue’, the connection can be created from Sprinkle.


In Datasets, the user must provide a table name and select the report type before creating a table. The user can also select a destination schema and option to give desired warehouse table name.


For some of the reports, incremental ingestion is being supported, users have to provide the Start Date from which ingestion will get started. Window for backfill for backfilling metrics in every run to include updates from the attribution window. Metrics acc. the selected reports. View Attribution Window and Swipe Up Attribution Window from dropdown where attribution window is the time period in which a conversion will be counted after a user sees an ad. Conversion breakout, this parameter provides a breakout of conversions based on where the conversions occurred.


In the Ingestion Jobs tab, the concurrency (number of tables that can run in parallel, a maximum of 7) can be set preferentially before running the job. The status of the job will be updated in the tab below once it’s complete. The jobs can also be set to run automatically by enabling autorun. Frequency can be changed by clicking on More --> Autorun-->Change Frequency.


import requests
from requests.auth import HTTPBasicAuth

auth =  HTTPBasicAuth(<API_KEY>, <API_SECRET>)
response = requests.get("https://<hostname>/api/v0.4/explore/streamresult/<EXPLORE_ID>", auth)

print(response.content)

library('httr')

username = '<API KEY>'
password = '<API SECRET>'

temp = GET("https://<hostname>/api/v0.4/explore/streamresult/<EXPLORE ID>",
           authenticate(username,password, type = "basic"))

temp = content(temp, 'text')
temp = textConnection(temp)
temp = read.csv(temp)

/*Download the Data*/

filename resp temp;
proc http
url="https://<hostname>/api/v0.4/explore/streamresult/<EXPLORE ID>"
   method= "GET"  
   WEBUSERNAME = "<API KEY>"
   WEBPASSWORD = "<API SECRET>"
   out=resp;
run;

/*Import the data in to csv dataset*/
proc import
   file=resp
   out=csvresp
   dbms=csv;
run;

/*Print the data */
PROC PRINT DATA=csvresp;
RUN;

import requests
import json

url='http://hostname/api/v0.4/createCSV'

username='API_KEY'
password='API_SECRET'

files={'file':open('FILE_PATH.csv','rb')}
values={'projectname':PROJECT_NAME','name':'CSV_DATASOURCE_NAME'}

r=requests.post(url, files=files, data=values, auth=(username,password))

res_json=json.loads(r.text)

print(res_json['success'])

import requests
import json

url='http://hostname/api/v0.4/updateCSV'

username='API_KEY'
password='API_SECRET'

files={'file':open('FILE_PATH.csv','rb')}
values={'projectname':PROJECT_NAME','name':'CSV_DATASOURCE_NAME'}

r=requests.post(url, files=files, data=values, auth=(username,password))

res_json=json.loads(r.text)

print(res_json['success'])

import requests

url='https://<hostname>/api/v0.4/explore/streamresult/<EXPLORE ID>'

username='API_KEY'
password='API_SECRET'

r=requests.get(url,auth=(username,password))
print(r)
print(r.text)

import requests
import pandas as pd

url='https://<hostname>/api/v0.4/explores/infoByFolder/<SPACE_ID>'

username='API_KEY'
password='API_SECRET'

r=requests.get(url,auth=(username,password)).json()
df = pd.DataFrame(r)
print(df)

import requests
import pandas as pd

url='https://<hostname>/api/v0.4/folders/byOrgName/<ORG_NAME>'

username='API_KEY'
password='API_SECRET'

r=requests.get(url,auth=(username,password)).json()
df = pd.DataFrame(r)
print(df.loc[:,['name','id']])

import requests

import pandas as pd

import io

url='https://<hostname>/api/v0.4/explore/streamresult/<EXPLORE ID>'

secret='API_SECRET'

r=requests.get(url,headers = {'Authorization': 'SprinkleUserKeys ' +secret } )

df = pd.read_csv(io.StringIO(r.text),sep=',')

import requests

import pandas as pd

import io

url='https://<hostname>/api/v0.4/segment/streamresult/<SEGMENT ID>'

secret='API_SECRET'

r=requests.get(url,headers = {'Authorization': 'SprinkleUserKeys ' +secret } )

df = pd.read_csv(io.StringIO(r.text),sep=',')

import requests

import json

url='http://hostname/api/v.o4/createCSV'

files={'file':open('path/file.csv’')}

values={'projectname':PROJECT_NAME,'name':'csv_datasource_name/table_name'}

secret='API_SECRET'

r=requests.post(url, files=files, data=values, headers = {'Authorization': 'SprinkleUserKeys ' +secret } )

res_json=json.loads(r.text)

import requests

import json

url='http://hostname/api/v.o4/updateCSV'

files={'file':open('path/file.csv’')}

values={'projectname':PROJECT_NAME,'name':'csv_datasource_name/table_name'}

secret='API_SECRET'

r=requests.post(url, files=files, data=values,headers = {'Authorization': 'SprinkleUserKeys ' +secret } )

res_json=json.loads(r.text)