Sprinkle

Sprinkle

  • Docs
  • Tutorials
  • API
  • FAQ's
  • Blog
  • Go to sprinkledata.com

›Machine Learning

Data Warehouse

  • Why the warehouse?
  • Amazon Athena
  • Apache Hive
  • Databricks
  • BigQuery
  • Snowflake
  • Redshift

Storage

  • Why the storage?
  • AWS S3 Bucket
  • Google Cloud Storage
  • Azure Blob Storage

Data Sources

  • Overview and Creating Data Source
  • Ingestion Mode
  • How Sprinkle handles the ingestion if there is a change in schema in the client DB?
  • Flattening JSON columns in DB
  • Column excluding and masking in DB table
  • Ingestion via SSH Tunnel
  • Configurable Destination Schema and table name
  • PostgreSQL
  • Salesforce
  • MySQL
  • MongoDB
  • Mixpanel
  • Hubspot
  • CosmosDB
  • CSV
  • AppsFlyer
  • CleverTap
  • SQL
  • Kafka
  • Amazon Kinesis
  • Azure Event Hub
  • Azure Table Storage
  • Zoho CRM
  • Freshsales
  • Google Analytics
  • GoogleSheet
  • Google Cloud Storage
  • Azure Blob
  • S3
  • Webhook
  • Sendgrid
  • Segment
  • Google Ads
  • Google Analytics MCF
  • Zendesk Support
  • Zendesk Chat
  • Google Search Console
  • Shopify
  • Facebook Ads
  • Mailchimp
  • WebURL
  • Klaviyo
  • SAP S4
  • Intercom
  • Marketo
  • Freshdesk
  • Leadsquared
  • Bigquery
  • MongoDB Atlas
  • Paytm
  • HDFS
  • FTPS
  • FTP

CDC Setup

  • MySQL
  • Postgres
  • Mongo

Transform

  • Schema Browser
  • Overview and Creating Flow
  • Advanced Features in Flow

KPI

    Models

    • Overview
    • Creating Model
    • Joins
    • Hierarchical Filters
    • Default Date Filters
    • Column Description in reports

    Segments

    • Overview
    • Creating Segment
    • Publish segment as table
    • Transpose
    • Show Labels Annotations on Charts
    • Tooltips
    • Fixed Columns
    • Conditional Builders
    • Cumulative Sum and Percentages
    • Embed Segment

    Metric Alerts

    • Overview and Creating Metric Alerts

Dashboards

  • Overview and Creating Dashboard
  • Embed Dashboard
  • Restricting filters
  • Sharing resources

Drill Down

  • Drill Down Feature In Segments And Dashboards
  • Drill Down Hierarchical Dimensions
  • Drill Down Expression Hierarchical Dimensions

Explores

  • Overview and Creating Explore
  • Show Labels Annotations on Charts
  • Tooltips

Machine Learning

  • Jupyter
  • Notebook Setup Guide

Sharing

  • Sharing Segments and Explore Reports
  • Share folders with users or groups

Scheduling

  • Schedule Timeline
  • Autorun

Notifications

  • Email Notifications
  • Slack Notifications

View Activity

  • View Activity

Admin

  • Admin -> usage
  • User Permissions & Restrictions
  • Github Integration

Launch On Cloud

  • AWS
  • Azure
  • Setup Sprinkle

Security

  • Security at Sprinkle
  • GDPR

Feedback

  • Option to take feedback from UI

Release Notes

  • Release Notes

Jupyter Notebook

The Jupyter Notebook is an open-source web application that allows you to create and share documents that contain live code, narrative text, equations, and visualizations.

It’s basically used for data cleaning and transformation, numerical simulation, statistical modeling, data visualization, machine learning.

  • Jupyter supports over 40 programming languages, including Python, R, and PySpark
  • Your code can produce rich, interactive output: HTML, images, videos, LaTeX, and custom MIME types.
  • Leverage big data tools, such as Apache Spark, from Python, R and PySpark. Explore that same data with pandas, scikit-learn, ggplot2, TensorFlow.

Notebooks is a new feature in Sprinkle, on clicking it, it routes the user to a screen where a new notebook can be created. Notebook name and its type should be selected before creating one.

     Create Jupyter     

To commence with notebook and to run your scripts, you need to click on the “Start” button. Once the notebook is started the user can import the libraries.

     Start Notebook     

How to import data from sprinkle’s explore and segment reports to the notebook?

Sprinkle created a library named “sprinkleSdk” to import data from the reports.

Please find the below script to import the library and to import data into the data frame.

Import sprinkle SDK:

from sprinkleSdk import SprinkleSdk as sp

Read segment:

df = sp.read_segment('<segment_id>')

_ _

Read explore:

df = sp.read_explore('<explore_id>')

Once data is imported, you can run every kind of analysis like descriptive, predictive, prescriptive, diagnostic analysis using these data.

How to create a table and update an existing table in Sprinkle post-analysis?

Create table in warehouse using dataframe:

sp.create_table(user_defined_name, df)

Update existing table in warehouse:

sp.update_table(user_defined_name, df)

How to work on Spark session operations?

Get spark session with default configurations:

spark = sp.getOrCreate()

Change spark app name while creating default spark session:

spark = sp.appName('some-name').getOrCreate()

Get spark session where the user can customise your configuration:

spark = sp.sparkBuilder()

appName('some-name')

.config("spark.some.config.option1", "some-value")

.config("spark.some.config.option2", "some-value")

.getOrCreate()

← TooltipsNotebook Setup Guide →

Product

FeaturesHow it worksIntegrationsDeploymentPricing

Industries

Retail & EcommerceUrban MobilityFinanceEducation

Departments

MarketingOperationsTechnology

Connect

Free trialAbout Us

Actionable Insights. Faster.

Sprinkle offers self-service analytics by unlocking enterprise scale data via simple search and powerful reporting service.


Copyright © 2021 Sprinkle data